
Reading folder and subfolders for PDFs with SSIS

Objective:
To give the ability to open, parse, and process Adobe PDF files in one folder and all the subfolders
destined for either CSV output or writing to a database.

The Thought Process:
I wanted to program the ability to read a folder and subfolders for PDF files and process them. The PDF
files which are similar are contained in separate folders. The script task that processes the pdf is based
on the folder it is in. For example, all PDFs in an Alabama folder is processed through the Alabama script
task. This way, several PDF files can be processed using the same code because the files are so similar.

C# and Adobe PDF files:
I used the same iTextSharp library for this script.

How it works:
Besides the timer, the whole process is contained in an ForEach Loop. The script creates a list of folders
and PDF files and processes each PDF file sequentienally (alphabetically). The Start Timer and Stop
Timer have been added to give feedback on how long the process took.

Figure 1. The main project

The Package variables are shown below.

Figure 2. The Package variables

The variables are described as follows:
 currentFile – This is the filename of the file that the script is currently processing.
 outList – The array of data that is compiled to be processed later. This must be declared as an

object because it is a list.
 outputType – Switch for the determining if the output should be a CSV file or processed through

SQL. Options are CSV and SQL.
 parseFolder – The folder name where the PDFs were found. This helps to determine which

script task to run.
 passText – The raw PDF file data that is passed to another script to process.
 timeStart – Keeps the date and time of when the script starts running.

The Start Timer is executed first to set the timeStart variable.

The PDF Files connection manager contains the ConnectionString Expression. This expression is set to
the @[User::currentFile] variable string.

Figure 3. The PDF Files ConnectionString Expression

The folder which the ForEach Loop Container starts its search for PDFs is declared in the Directory
property.

Figure 4. The directory property of the ForEach Loop Container

The first item in the ForEach Loop Container is a Data Flow Task. This task requires a Connection
Manager to be created. I called this Connection Manager: PDF Files.

Figure 5. PDF Files Connection Manager

The current file is sent to the next task: Get Folder. The following are the variables that are passed
between the previous task and next task.

Figure 6. The Get Folder variables

This script takes the name of the PDF, opens it, reads the lines into a text string, and then reads what
folder the PDF file was found in. The folder name determines which script task is run next. This script
receives the text string read from the PDF file.

This project only contains two scripts but could contain more based on the folders and pdf files
contained in them. The Expression in the Constraint options are shown below:

 @[User::parseFolder] == "Alabama"
 @[User::parseFolder] == "StClair"

We will use Alabama only from this point on. The folder name is named Alabama and contains several
PDF files related to Alabama PDFs.

Figure 7. The Alabama folder has been read

The following variables are read and written by the “Alabama” Script Task.

Figure 8. The Alabama variables

This Script Task processes the PDF text strings and adds them to the outList variable in CSV format.

An expression is added to the connection string to either Output CSV or Alabama DB. This is shown set
below:

Figure 9. The Output CSV Script Task will be executed if this is set to "CSV”

Figure 10. The Alabama Output CSV Script Task

The currentFile is passed to determine what the name of the CSV file will be. The PDF extension is
replaced with CSV for creating a unique filename. The outList contains the CSV data.

The folders will be read alphabetically and when all the folders have been read and processed the
ForEach Loop Container will then run the Stop Timer Script Task.

The Stop Timer Script Task requires the timeStart variable to be passed to perform a calculation on the
elapsed time.

Figure 11. The Stop Timer Script Task variable

A MessageBox should now show the elapsed time.

Figure 12. The MessageBox showing elapsed time

Known Issues (Possibly):
The output folder is “hard coded” in the Output CSV Script Task. This could easily be converted to a
Package variable for future projects.

Possible future enhancements:
- Change the “hard coded” output folder name into a Package variable.

Michael Keller
Accumatch
Reading folder and subfolders for PDFs with SSIS
October 29, 2019 (Revised October 30, 2019)

